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Abstract—This paper presents an efficient time-domain method
for computing the propagation of electromagnetic waves in mi-
crowave structures. The procedure uses high-order vector bases to
achieve high-order accuracy in space, the Newmark’s method to
provide unconditional stability in time, and the transfinite-element
method to truncate the waveguide ports. The resulting system ma-
trix is real, symmetric, positive–definite, and can be solved by using
the highly efficient multilevel preconditioned conjugate gradient
algorithm. Since the method allows large time steps and nonuni-
form grids, the computational complexity for problems with ir-
regular geometries is superior to the finite-difference time-domain
method.

Index Terms—Hierarchical vector bases, late-time instability,
Newmark’s scheme, scattering matrix, time-domain Maxwell’s
equations, transfinite-element method, vector finite-element
method.

I. INTRODUCTION

ALTHOUGH the finite-difference time-domain (FDTD)
method is widely used to model electromagnetic-wave

propagation in microwave structures, it has three major draw-
backs. First, FDTD employs a low-order approximation in
space that requires at least ten cells per wavelength to achieve
acceptable accuracy. Second, FDTD’s stability is tied to grid
size through the Courant condition and imposes small time
steps in structures involving fine details. Third, FDTD is not
compliant with interface conditions in materials varying in both
permittivity and permeability. Even newer conformal FDTD
methods are not compliant because two grids are required [1].
These drawbacks necessitate the use of fine grids and many
time steps and, thus, result in long solution times with large
complex problems.

While FDTD has been very widely used in the past, finite-
element time-domain (FETD) methods have also been developed
in recent years [7]–[9]. FETD is an outgrowth of advances
in finite-element frequency-domain (FEFD) methods [2]–[6].
In [7], an unconditionally stable FETD method is presented
that circumvents the major drawbacks of FDTD. Advantages
of FETD include the use of high-order vector basis functions
to achieve high accuracy, unconditional stability to allow the
time step to be taken independent of the mesh size, and the use
of a single mesh that easily conforms to material interfaces.
FETD provides more accurate solutions for a given mesh size,
it allows the time step to depend on the rise/fall time of the
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input signal rather than the mesh size, and it adapts the mesh
to fine details without requiring the mesh to be fine elsewhere.

This paper improves FETD in several ways. First, we rewrite
the time-domain vector-wave equation in scaled time and space
coordinates, making the new equation applicable to any dimen-
sional scale. We then discretize the equation with the high-order
hierarchical vector bases developed in [6]. These hierarchical
basis functions bestow a hierarchical structure on the system
matrix; this allows the system equation to be solved by using the
efficient preconditioned conjugate gradient algorithm. Next, we
employ the transfinite-element method [10] to couple the input
and output waveguide ports to the three-dimensional (3-D) re-
gion. In the past, the absorbing boundary condition (ABC) [11]
was applied at port boundaries. However, the ABC approach has
limited success with multimode scattering because both the port
impedance and mode patterns change with frequency. Thus, the
ABC approach is limited to less dispersive cases such as mi-
crostrip problems with single-mode propagation. The transfi-
nite-element method reduces the field unknowns on the ports to
the coefficients of the modal expansion. It is proven in [12] that
the transfinite-element method produces unitary scattering ma-
trices. Thus, the method yields more accurate solutions than the
ABC approach. Finally, Newmark’s method is used to derive an
unconditionally stable second-order finite-difference equation
in time.

II. FORMULATION

A. Scaled Time-Domain Vector Wave Equation

Maxwell’s equations yield the following time-domain
vector-wave equation in source-free regions:

in (1)

Here, is the electric field and , , and are the con-
ductivity, relative permittivity, and relative permeability, respec-
tively. The boundary conditions to be imposed on (1) are

on

on (2)

Here, denotes the outward unit normal of the surface. Let
be the highest angular frequency of interest. Scaling time as

, (1) becomes

(3)
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where and is the permeability of air. Further
scaling the spatial coordinates as and the differential
operator as yields

(4)

where . Using the same transformations, the
ABC (2) becomes

on (5)

For the sake of simplicity, we will drop the prime signs and
employ the new time and space coordinate scales everywhere
in the following.

B. Discretization in Space

Applying the Galerkin’s method and Green’s theorem to (4)
yields the following bilinear functional:

(6)

where is the port boundary. Now we write the testing and
trial vectors as a linear combination of the vector basis set

Here, and are the coefficients multiplying the basis
functions. Equation (6) becomes

(7)

where the subscripts and signify the interior and port un-
knowns and

As discussed in [6], to optimize the performance of the matrix
solver, we need to maximize the mutual orthogonality among
the basis vectors themselves and among their curls.

C. Transfinite-Element Method

At waveguide ports, we write the transverse components of
the testing and trial solutions on the port boundary as a su-
perposition of modal solutions

(8)

Here, is the amplitude function of the input signal, the ’s
are the unknown modal coefficients of the th mode at the th
port, and the ’s are the corresponding eigenmodes of the
transverse electric field at the frequency . Equation (8) is an
accurate approximation provided the field patterns stay similar
as the frequency varies. This is true in the case of homogeneous
waveguides and microstrip lines. In the same way, the transverse
magnetic field can be written in the terms of the eigenmodes of
the transverse magnetic fields as follows:

Here, the minus sign in front of the input field indicates that the
input wave travels in the opposite direction.

By orthogonality of waveguide modes, we know that

The right-hand side of (7) can be integrated to give
, where the column vector

contains 1 at the first entry and 0 elsewhere. Further, setting the
interior values equal to the port values along port boundaries
imposes continuity of the field vectors. Hence, from (8),
and are written in terms of a port-mapping matrix as

Plugging the above equations into (7) gives the transfinite-
element matrix equation

(9)

where

The transfinite-element method reduces the number of un-
knowns, but makes the system matrices denser by adding
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full columns, where is the number of modal coefficients. If
there are unknowns on a port, the number of added entries is

. In the ABC approach, the part of the system matrix linked
to the port has nonzero entries, where is the number of
nonzero entries per row. In most cases, the computational cost
of both methods is comparable.

D. Discretization in Time

Newmark’s method provides the following second-order dif-
ference equation in time:

(10)

Given two starting vectors and , is computed through
the iteration

(11)

where

Finally, the scattering matrix is obtained by dividing the
Fourier components of the modal coefficients of the output
signal by the corresponding components of the input signal.

III. PERFORMANCE ISSUES

A. Performance Comparison With the Frequency-Domain
Formulation

Both the time- and frequency-domain methods have certain
advantages and disadvantages. Some problems, e.g., nonlinear
materials, can only be solved in the time domain, while some
problems, e.g., dispersive materials, are more easily solved in
the frequency domain. The types of the solutions are also dif-
ferent: time-domain methods provide transient solutions, while
frequency-domain methods provide time–harmonic solutions.
The best approach to use depends on the needs of the particular
problem being solved. The following advantages and disadvan-
tages of the time-domain formulation are observed.

Advantages

1) The time-domain system matrix is pure real, while
the frequency-domain transfinite-element method
system matrix generates a few complex entries.

2) The time-domain system matrix is positive–definite,
while the system matrix in the frequency-domain
formulation is indefinite. For this reason, the time-
domain matrix converges much faster using an iter-
ative preconditioned conjugate gradient solver.

3) Broad-band solution is a natural outcome of the
time-domain simulation; in the frequency domain,
one must employ a model order-reduction algorithm
[12].

4) The zero-frequency instability of the frequency-
domain formulation [13] does not occur in the time-

domain formulation. This is because the matrix
dominates the system matrix in the time-domain
formulation, while the matrix dominates in the
frequency-domain formulation. Zero frequency in
the frequency domain corresponds to an infinite
time step in the time domain, which does not
happen in practical numerical simulations. At the
other extreme of approaching a zero time step,
the time-domain formulation does not produce a
singular matrix either. In fact, the technique used
to overcome the frequency-domain zero-frequency
instability, the tree–cotree splitting of the edge bases,
worsens the condition number of the system matrix
and, for that reason, the splitting is counterproductive
and not recommended. This has been confirmed by
numerical experiments.

Disadvantages

1) As discussed later, there is a mild late-time instability
if the simulation is carried on long enough.

2) In the case of high- or filter circuits, the time-do-
main formulation requires long simulation times be-
cause the inner structure traps the incident wave, re-
leasing energy slowly back to the ports.

3) Due to truncation errors in time, the time-domain
solution is less accurate than the frequency-domain
solution.

Problems associated with late-time instability and long sim-
ulation times can be avoided by using the matrix pencil method
[14]. The matrix pencil method computes the poles and residues
of the system and uses them to predict the late-time response.
In this way, the simulation is completed before late-time insta-
bility sets in.

B. Termination Criterion

The question of “when to terminate” arises in many numerical
simulations. Without a termination criterion, one cannot judge
whether the new method is more efficient than the existing one.
Here, we terminate the simulation according to the following
procedure.

• We first determine the instant that the input pulse reaches
the output ports by monitoring the scattering coefficients.

• We continue the simulation for a period of time that is
twice the pulsewidth of the input signal, but terminate
early if the total energy exiting to the ports is close to the
input energy.

C. Late-Time Instability

If the excitation is periodic, the steady-state solution of (10)
is also periodic. By plugging and

into (10), one can prove that satisfies the ma-
trix equation resulting from the frequency-domain formulation
up to second order in time. This shows that with a periodic ex-
citation, time marching arrives at the same solution as the fre-
quency-domain formulation. Unfortunately, (10) also carries a
dc solution. For the sake of discussion, let us assume the mi-
crowave structure is filled with air and shielded by a perfect
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(a)

(b)

Fig. 1. Mixed-Gaussian pulse. (a) Time series. (b) Spectral content.

conductor. It is observed that (9) allows the following nontrivial
dc solution [15]:

Here, and are the coefficients of the rotational and gra-
dient components of the field vector. Thus, the numerical con-
tamination induced by the dc solution grows linearly in time,
but is not as severe as the instability resulting from violating
the Courant condition in the FDTD algorithm where the spu-
rious solutions grow exponentially in time. More significantly,
the scattering coefficients are unaffected by the dc solution. This
provides another intrinsic advantage of the transfinite-element
method.

D. Renormalization of Port Impedance

When dealing with nonmicrostrip ports, the impedances
of the ports vary significantly with frequency. In deriving
the system equation, we assumed that the port is terminated
with the impedance corresponding to the highest frequency
of interest. We, therefore, need to renormalize the computed
scattering matrix to the matching impedance. One can incor-
porate port dispersion into (8), and implement an expensive
convolution integral to compute the frequency-dependent

(a)

(b)

Fig. 2. Effect of the spectral content of the input signal for the coaxial
waveguide. (a) Transmitted scattering amplitudes. (b) Spectral content of the
input signals.

terms. Here, we propose a simpler alternative requiring only a
post-solution step. We first solve (11), and then transform the
computed scattering matrix to the matched scattering matrix

according to the following two equations [16]:

is a diagonal matrix with diagonal entries defined by the
port impedance at the angular frequency . Since the waveguide
impedance contains poles, rational polynomials are used to fit
the impedance curve.

E. Excitation Signal

To achieve uniform accuracy across the frequency band
of interest, the spectral content of the input signal should be
perfectly flat. However, an input signal of short duration is
desirable so that time marching can be terminated as soon
as the input signal passes through the system. Traditionally,
time-domain methods have employed a Gaussian pulse or
a derivative-Gaussian pulse for input. Unfortunately, both
spectrums vary significantly within the band of interest. While
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(a) (b)

(c)

Fig. 3. Comparison of unmatched and matched scattering amplitudes for the rectangular waveguide. (a) S11(f). (b) S21(f). (c) S11(t).

the Gaussian pulse peaks at dc and has low spectral content at
the high end, the derivative-Gaussian pulse does not have a dc
component. To compensate for the low spectral content at the
trailing end of the Gaussian pulse, we add a derivative-Gaussian
pulse designed to peak at the highest frequency of interest

where , and is the highest frequency of
interest. Fig. 1 shows the input signal in both the time and fre-
quency domains for GHz. We observe that the spectral
content of the mixed-Gaussian pulse is relatively flat.

IV. NUMERICAL RESULTS

We now demonstrate the procedure with the following five
examples:

1) coaxial waveguide;
2) rectangular waveguide;
3) microstrip low-pass filter;
4) asymmetrical waveguide step;
5) shielded rectangular dielectric waveguide.

The ports are solved using the full-wave procedure of [18]. To
obtain an appropriate 3-D mesh, the problems are first solved
in the frequency domain and the mesh is adaptively refined
at the highest frequency of interest [17]. The meshes are then

used to run time-domain simulations with the mixed-Gaussian
pulse applied at the ports. A manually seeded mesh containing
eight points per wavelength and refined around singular cor-
ners and edges can yield an accurate solution as well. If high-
order bases are used, the number of points per wavelength can
be reduced accordingly. In the following, the solutions of the
proposed method are validated by either analytical or FEFD
solutions.

A. Coaxial Waveguide

To demonstrate the effects of the spectral content of the input
signal, we solve for the scattering matrix of an empty coaxial
waveguide with an inner diameter of 0.07 in, an outer diam-
eter of 0.232 in, and 1-in long, equivalent to 0.85 at 10 GHz.
Since the propagating mode is the nondispersive TEM mode,
the problem of waveguide dispersion does not exist. The sim-
ulation was terminated at the 112th time step when the energy
conservation error reached 1e-4. At each time step, the multi-
level preconditioned gradient method took five iterations to re-
duce the relative residual to 1e-4. Since the mesh in this problem
is uniform, an explicit scheme such as the FDTD method would
have performed more rapidly in this case. However, as the fol-
lowing example shows, a much smaller mesh can be used with
high-order bases, making the proposed method a competitive
alternative. Fig. 2(a) shows the computed transmitted scattering
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Fig. 4. Comparison of rates of convergence for the rectangular waveguide.

amplitudes for three types of the input signals. The spectral con-
tent of these three signals are plotted in Fig. 2(b). The scattering
amplitudes exhibit relatively larger errors at frequencies with
lower input amplitudes.

B. Empty Rectangular Waveguide

Since the port impedances are not matched in the proposed
method, here we examine the effect of this approach. We study
a rectangular waveguide of dimensions of 8 16 mm and
10-mm long. Fig. 3(a) and (b) compares the scattering ampli-
tudes before and after renormalization with the exact solution.
Above cutoff, the unmatched scattering amplitudes show signs
of dispersion; below cutoff, the waveguide is completely mis-
matched to the assumed impedance at the ports and the wave
is totally reflected. Indeed, the port impedance below cutoff is
pure imaginary, indicating a lossy port. If the port impedance
were matched, the wave would travel through the ports and this
would take only 0.35 ns, equal to the pulsewidth plus the time
needed to travel from the input to output port. Since evanescent
modes are bounced between the ports, it takes 0.8 ns for the
wave to die out inside the structures. Fig. 3(c) shows that the
matched reflected wave has a smaller amplitude than the un-
matched one, revealing the consequence of the unmatched port
impedance.

To demonstrate the benefit of using high-order bases in space,
we solve a series of uniformly refined meshes with the order
of the range space of the bases rising from zero to three. The
average error versus CPU time is plotted in Fig. 4 where the
error is computed as

Error in the time-domain simulation has two parts: discretiza-
tion error in space and truncation error in time. In Fig. 4, we see
that the higher order bases are more accurate with small meshes,
but reach a plateau of 2.2e-4 when time truncation error dom-
inates. To further lessen total error, one must reduce the time
step, which is confirmed by numerical experiment. We observe
in Fig. 5(a) and (b) that the errors at the cutoff frequency are

(a)

(b)

Fig. 5. Distribution of error for the rectangular waveguide. (a) Element size=
h. (b) Element size = h=2.

often larger and converge slower than those at the other fre-
quency points. The cutoff frequency point behaves like a sin-
gular point in the time coordinate, analogous to corners in space
coordinates.

C. Microstrip Low-Pass Filter

To show that the proposed method can be applied to mi-
crostrip structures, we consider a microstrip low-pass filter. The
top view of the filter is depicted in Fig. 6. The substrate is 25-mil
thick, and has a relative dielectric constant of 9.6. Due to the
presence of three stubs, the spectral response of this filter from
2 to 20 GHz contains three poles. The time-domain solution is
compared to a discrete sampling of the frequency-domain solu-
tion in Fig. 7. Due to singularities around the edges of the con-
ducting strip, the mesh is extremely fine in these regions. If an
explicit scheme has been used, the time step would need to be
orders of magnitude smaller than is required here.

D. Asymmetrical Waveguide Step

To demonstrate the multimode capability of the transfinite-
element method, we solve an asymmetrical rectangular wave-
guide step where one propagating mode from the input port is
split into two modes at the output port. The dimensions of the
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Fig. 6. Top view of a microstrip low-pass filter.

Fig. 7. Reflected scattering amplitude of the low-pass filter.

waveguide are changed from 2 6 mm to 3 9 mm , as shown
in Fig. 8(a). The cutoff frequency of the mode of the nar-
rower guide is 25 GHz and the cutoff frequencies of the
and modes of the wider guide are 17 and 33 GHz, re-
spectively. To obtain the scattering matrix up to 35 GHz, we
need to allow two modes for the wider guide and one mode
for the narrower guide. The results are in excellent agreement
with the frequency-domain solution, as shown in Fig. 8(b) where

is the entry of the generalized scattering matrix from
port , mode to port , mode . Fig. 9 illustrates how the input
signal from the narrower guide is split into two modes at the port
of the wider guide.

E. Shielded Rectangular Dielectric Waveguide

To extend the applicability of the proposed method to the
structures with port extensions other than homogeneous waveg-
uides or microstrip lines, we consider the shielded rectangular
dielectric waveguide shown in the insert of the Fig. 10. In this

(a)

(b)

Fig. 8. (a) Asymmetrical waveguide step. (b) Transmitted scattering
amplitudes of the asymmetrical waveguide step.

Fig. 9. Comparison of input and output time series for the asymmetrical
waveguide step.

waveguide, the modes are hybrid, neither TE, nor TM. We com-
pare the transmitted scattering amplitudes from the proposed
method with those of the frequency-domain method. As shown
in Fig. 11, large errors appear for the second mode at the low-fre-
quency end. To inspect the cause, we plot the similarity index
of the mode pattern versus frequency in Fig. 12. The similarity
index of the mode pattern is defined as
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Fig. 10. Propagation constants of the shielded rectangular dielectric
waveguide.

Fig. 11. Transmitted scattering amplitudes of the shielded rectangular
dielectric waveguide.

Fig. 12. Similarity index of the mode pattern for the shielded rectangular
dielectric waveguide.

where is the port solution at the frequency . We discover
the mode pattern of the second mode below 3 GHz does not
resemble the mode pattern at 7 GHz. Therefore, in this case, the
proposed method cannot be applied to the second mode. This
example demonstrates our earlier contention that for structures
with other than homogeneous waveguide or microstrip ports,

one needs to compute the similarity index up front to determine
the applicability of the proposed method.

V. CONCLUSIONS

A highly efficient procedure has been presented for the time
solution of 3-D microwave structures. The proposed method has
three major advantages over the FDTD method. First, the proce-
dure requires a much smaller mesh than FDTD. This is achieved
by employing unstructured meshes, high-order bases, and the
transfinite-element method. Second, the procedure employs an
unconditionally stable time-marching process that allows larger
time steps. Third, the procedure uses only one conforming mesh
and, hence, permits exact modeling of interfaces between mate-
rials with both permittivity and permeability variations. Numer-
ical examples demonstrate the efficacy and applicability of the
proposed method.
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