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The Transfinite-Element Time-Domain Method

Din-Kow Sun, Member, |EEE, Jin-Fa Lee, Member, |EEE, and Zoltan Cendes, Member, | EEE

Abstract—Thispaper presentsan efficient time-domain method
for computing the propagation of electromagnetic waves in mi-
crowave structures. The procedure uses high-or der vector basesto
achieve high-order accuracy in space, the Newmark’s method to
provideunconditional stability in time, and thetransfinite-element
method to truncate thewaveguide ports. Theresulting system ma-
trixisreal, symmetric, positive-definite, and can be solved by using
the highly efficient multilevel preconditioned conjugate gradient
algorithm. Since the method allows large time steps and nonuni-
form grids, the computational complexity for problems with ir-
regular geometriesissuperior tothefinite-differencetime-domain
method.

Index Terms—Hierarchical vector bases, late-time instability,
Newmark’s scheme, scattering matrix, time-domain Maxwell's
equations, transfinite-element method, vector finite-element
method.

|I. INTRODUCTION

LTHOUGH the finite-difference time-domain (FDTD)

method is widely used to model electromagnetic-wave
propagation in microwave structures, it has three major draw-
backs. First, FDTD employs a low-order approximation in
space that requires at least ten cells per wavelength to achieve
acceptable accuracy. Second, FDTD’s stahility is tied to grid
size through the Courant condition and imposes small time
steps in structures involving fine details. Third, FDTD is not
compliant with interface conditionsin materials varying in both
permittivity and permeability. Even newer conforma FDTD
methods are not compliant because two grids are required [1].
These drawbacks necessitate the use of fine grids and many
time steps and, thus, result in long solution times with large
complex problems.

While FDTD has been very widely used in the past, finite-
element time-domain (FETD) methodshave al so been devel oped
in recent years [7]-{9]. FETD is an outgrowth of advances
in finite-element frequency-domain (FEFD) methods [2]-{6].
In [7], an unconditionally stable FETD method is presented
that circumvents the major drawbacks of FDTD. Advantages
of FETD include the use of high-order vector basis functions
to achieve high accuracy, unconditional stability to allow the
time step to be taken independent of the mesh size, and the use
of a single mesh that easily conforms to materia interfaces.
FETD provides more accurate solutions for a given mesh size,
it alows the time step to depend on the rise/fall time of the
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input signal rather than the mesh size, and it adapts the mesh
to fine details without requiring the mesh to be fine elsewhere.

This paper improves FETD in several ways. First, we rewrite
the time-domain vector-wave equation in scaled time and space
coordinates, making the new equation applicable to any dimen-
sional scale. We then di scretize the equation with the high-order
hierarchical vector bases developed in [6]. These hierarchical
basis functions bestow a hierarchical structure on the system
matrix; thisallowsthe system equation to be solved by using the
efficient preconditioned conjugate gradient algorithm. Next, we
employ the transfinite-element method [10] to couple the input
and output waveguide ports to the three-dimensional (3-D) re-
gion. In the past, the absorbing boundary condition (ABC) [11]
was applied at port boundaries. However, the ABC approach has
limited success with multimode scattering because both the port
impedance and mode patterns change with frequency. Thus, the
ABC approach is limited to less dispersive cases such as mi-
crostrip problems with single-mode propagation. The transfi-
nite-element method reduces the field unknowns on the portsto
the coefficients of the modal expansion. It isprovenin [12] that
the transfinite-element method produces unitary scattering ma-
trices. Thus, the method yields more accurate solutions than the
ABC approach. Finally, Newmark’ s method is used to derive an
unconditionally stable second-order finite-difference equation
in time.

[1. FORMULATION
A. Scaled Time-Domain Vector Wave Equation

Maxwell's equations yield the following time-domain
vector-wave eguation in source-free regions:
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Here, E is the dectric field and o, £, and p,. are the con-
ductivity, relative permittivity, and rel ative permeability, respec-
tively. The boundary conditions to be imposed on (1) are
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Here, n denotes the outward unit normal of the surface. Let wy
be the highest angular frequency of interest. Scaling time as
t' = wot, (1) becomes
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where ky = wg/c and uo is the permeability of air. Further
scaling the spatial coordinates as ' = ko and the differential
operator as V' = V /kg yields

PE
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whereo’ = ((noowo)/ka). Using the sametransformations, the
ABC (2) becomes

V’xﬁz%xﬁ,

For the sake of simplicity, we will drop the prime signs and
employ the new time and space coordinate scales everywhere
in the following.

onl.. 5)

B. Discretization in Space
Applying the Galerkin's method and Green's theorem to (4)
yields the following bilinear functional:
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where ', is the port boundary. Now we write the testing and
trial vectorsasalinear combination of the vector basis set {&; }

E.=> dile.); E= Zd’i(e)i.

Here, (e.); and (e); are the coefficients multiplying the basis
functions. Equation (6) becomes
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where the subscripts I and P signify the interior and port un-
knowns and

1
K“I/—VX&ZVX&JCZQ
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Mij = /E,,&i . &JdQ

Toe
Asdiscussed in[6], to optimize the performance of the matrix

solver, we need to maximize the mutual orthogonality among
the basis vectors themsel ves and among their curls.
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C. Transfinite-Element Method

At waveguide ports, we write the transverse components of
the testing and trial solutions on the port boundary I';, as a su-
perposition of modal solutions

E., = au, (t)Epi(wo)
=1
Ep = 8p11(t) Ei1(wo) + D api(t) Epi(wo)- )
=1

Here, I(t) istheamplitude function of theinput signal, the a,,;’s
are the unknown modal coefficients of the ith mode at the pth
port, andthe E,,i (wo)’ sarethe corresponding eigenmodes of the
transverse electric field at the frequency «wg. Equation (8) is an
accurate approximation provided the field patterns stay similar
asthefrequency varies. Thisistruein the case of homogeneous
waveguidesand microstrip lines. Inthe sameway, thetransverse
magnetic field can be written in the terms of the eigenmodes of
the transverse magnetic fields as follows:

Hy = =81 1(t) Hiz(wo) + > api(t) Hpi(wo)-
=1
Here, the minus signin front of theinput field indicates that the
input wave travels in the opposite direction.
By orthogonality of waveguide modes, we know that

/ (Bpiwo) x Hyj(wo)) - nda = 6;.

Ip

The right-hand side of (7) can be integrated to give
—pocal (8/0t)(—1(t)i + a), where the column vector i
contains 1 at the first entry and O el sawhere. Further, setting the
interior values equal to the port values along port boundaries
imposes continuity of the field vectors. Hence, from (8), e¢p
and ¢, p are written in terms of a port-mapping matrix P as

ep=P(t)i+a)=Pd cp=adP.

Plugging the above equations into (7) gives the transfinite-
element matrix equation

d%e de
e + 8t+ e=5b 9
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The transfinite-element method reduces the number of un-
knowns, but makes the system matrices denser by adding m
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full columns, where m is the number of modal coefficients. If
thereare V2 unknowns on aport, the number of added entriesis
mN?2. Inthe ABC approach, the part of the system matrix linked
to the port has aN? nonzero entries, where a is the number of
nonzero entries per row. In most cases, the computational cost
of both methods is comparable.

D. Discretization in Time
Newmark’s method provides the following second-order dif-
ference equation in time:
en-l—l — 2en + en—l N Ben-l—l _ en—l
Ag? 2A¢
6n—l—l +26n +6n—1
4

Given two starting vectors ¢ —* and ¢, ¢” is computed through
the iteration

+K =", (10)

d" = d" 4 ATH (A — BAt" — Ke"A?) (11

where
dn :en _ en—l
BAt  KAt?

A=nm4 22t .
MR

Finally, the scattering matrix S is obtained by dividing the
Fourier components of the modal coefficients of the output
signal by the corresponding components of the input signal.

I1l. PERFORMANCE ISSUES

A. Performance Comparison With the Frequency-Domain
Formulation

Both the time- and frequency-domain methods have certain
advantages and disadvantages. Some problems, e.g., nonlinear
materials, can only be solved in the time domain, while some
problems, e.g., dispersive materials, are more easily solved in
the frequency domain. The types of the solutions are also dif-
ferent: time-domain methods provide transient solutions, while
frequency-domain methods provide time—harmonic solutions.
The best approach to use depends on the needs of the particular
problem being solved. The following advantages and disadvan-
tages of the time-domain formulation are observed.

Advantages

1) Thetime-domain system matrix A ispurereal, while
the frequency-domain transfinite-element method
system matrix generates afew complex entries.

2) Thetime-domain system matrix is positive—definite,
while the system matrix in the frequency-domain
formulation is indefinite. For this reason, the time-
domain matrix converges much faster using an iter-
ative preconditioned conjugate gradient solver.

3) Broad-band solution is a natural outcome of the
time-domain simulation; in the frequency domain,
one must employ amodel order-reduction algorithm
[22].

4) The zero-frequency instability of the frequency-
domain formulation [13] does not occur in the time-
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domain formulation. This is because the M matrix
dominates the system matrix in the time-domain
formulation, while the K matrix dominates in the
frequency-domain formulation. Zero frequency in
the frequency domain corresponds to an infinite
time step in the time domain, which does not
happen in practical humerical simulations. At the
other extreme of approaching a zero time step,
the time-domain formulation does not produce a
singular matrix either. In fact, the technique used
to overcome the frequency-domain zero-frequency
instability, thetree—cotree splitting of the edge bases,
worsens the condition number of the system matrix
and, for that reason, the splitting iscounterproductive
and not recommended. This has been confirmed by
numerical experiments.

Disadvantages

1) Asdiscussed later, thereisamild late-timeinstability
if the simulation is carried on long enough.

2) In the case of high-Q@ or filter circuits, the time-do-
main formulation requireslong simulation times be-
cause the inner structure traps the incident wave, re-
leasing energy slowly back to the ports.

3) Due to truncation errors in time, the time-domain
solution is less accurate than the frequency-domain
solution.

Problems associated with late-time instability and long sim-
ulation times can be avoided by using the matrix pencil method
[14]. Thematrix pencil method computes the polesand residues
of the system and uses them to predict the late-time response.
In this way, the simulation is completed before late-time insta-
bility setsin.

B. Termination Criterion

Thequestion of “whentoterminate” arisesin many numerical
simulations. Without a termination criterion, one cannot judge
whether the new method is more efficient than the existing one.
Here, we terminate the simulation according to the following
procedure.

« Wefirst determine the instant that the input pulse reaches
the output ports by monitoring the scattering coefficients.

* We continue the simulation for a period of time that is
twice the pulsewidth of the input signal, but terminate
early if the total energy exiting to the portsis close to the
input energy.

C. Late-Time Instability

If the excitation is periodic, the steady-state solution of (10)
isalso periodic. By plugging ¢+ = exp(jAt)e™ and ¢! =
exp(—jAt)e™ into (10), one can prove that ™ satisfies the ma-
trix equation resulting from the frequency-domain formulation
up to second order in time. This shows that with a periodic ex-
citation, time marching arrives at the same solution as the fre-
guency-domain formulation. Unfortunately, (10) also carries a
dc solution. For the sake of discussion, let us assume the mi-
crowave structure is filled with air and shielded by a perfect
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Fig. 1. Mixed-Gaussian pulse. (a) Time series. (b) Spectral content.

conductor. It is observed that (9) allowsthe following nontrivial
dc solution [15]:

!
Cdc = (erot = 07 Cgrad, @ — O)t

Here, e, @nd e4,q arethe coefficientsof therotational and gra-
dient components of the field vector. Thus, the numerical con-
tamination induced by the dc solution grows linearly in time,
but is not as severe as the instability resulting from violating
the Courant condition in the FDTD algorithm where the spu-
rious solutions grow exponentially in time. More significantly,
the scattering coefficients are unaffected by thedc solution. This
provides another intrinsic advantage of the transfinite-element
method.

D. Renormalization of Port Impedance

When dealing with nonmicrostrip ports, the impedances
of the ports vary significantly with frequency. In deriving
the system equation, we assumed that the port is terminated
with the impedance corresponding to the highest frequency
of interest. We, therefore, need to renormalize the computed
scattering matrix to the matching impedance. One can incor-
porate port dispersion into (8), and implement an expensive
convolution integral to compute the frequency-dependent
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Fig. 2. Effect of the spectral content of the input signal for the coaxial
waveguide. (a) Transmitted scattering amplitudes. (b) Spectral content of the
input signals.

terms. Here, we propose a simpler alternative requiring only a
post-solution step. We first solve (11), and then transform the
computed scattering matrix to the matched scattering matrix
S, according to the following two equations [16]:

Z = Zéo(l +9)(1 - S)*lzé0
-1
Sm = (ZJ%ZZJ% - 1) (Z;%ZZJ% +1) .

Z. is adiagona matrix with diagonal entries defined by the
port impedance at the angular frequency w. Since the waveguide
impedance contains poles, rational polynomials are used to fit
the impedance curve.

E. Excitation Signal

To achieve uniform accuracy across the frequency band
of interest, the spectral content of the input signal should be
perfectly flat. However, an input signal of short duration is
desirable so that time marching can be terminated as soon
as the input signal passes through the system. Traditionally,
time-domain methods have employed a Gaussian pulse or
a derivative-Gaussian pulse for input. Unfortunately, both
spectrums vary significantly within the band of interest. While
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Fig. 3. Comparison of unmatched and matched scattering amplitudes for the rectangular waveguide. (a) S11(f). (b) S21(f). (c) S11(¢).

the Gaussian pulse peaks at dc and has low spectral content at
the high end, the derivative-Gaussian pulse does not have a dc
component. To compensate for the low spectral content at the
trailing end of the Gaussian pul se, we add aderivative-Gaussian
pulse designed to peak at the highest frequency of interest

I(1) = 0.214exp ( — 72) + 27 exp ( — 477)

where T = 2fo(t — 1.5/ fo), and f isthe highest frequency of
interest. Fig. 1 shows the input signal in both the time and fre-
quency domainsfor fo = 10 GHz. We observe that the spectral
content of the mixed-Gaussian pulseisrelatively flat.

IV. NUMERICAL RESULTS

We now demonstrate the procedure with the following five
examples:

1) coaxial waveguide;

2) rectangular waveguide;

3) microstrip low-pass filter;

4) asymmetrical waveguide step;

5) shielded rectangular dielectric waveguide.
The ports are solved using the full-wave procedure of [18]. To
obtain an appropriate 3-D mesh, the problems are first solved
in the frequency domain and the mesh is adaptively refined
at the highest frequency of interest [17]. The meshes are then

used to run time-domain simulations with the mixed-Gaussian
pulse applied at the ports. A manually seeded mesh containing
eight points per wavelength and refined around singular cor-
ners and edges can yield an accurate solution as well. If high-
order bases are used, the number of points per wavelength can
be reduced accordingly. In the following, the solutions of the
proposed method are validated by either analytical or FEFD
solutions.

A. Coaxial Waveguide

To demonstrate the effects of the spectral content of the input
signal, we solve for the scattering matrix of an empty coaxial
waveguide with an inner diameter of 0.07 in, an outer diam-
eter of 0.232in, and 1-in long, equivalent to 0.85X at 10 GHz.
Since the propagating mode is the nondispersive TEM mode,
the problem of waveguide dispersion does not exist. The sim-
ulation was terminated at the 112th time step when the energy
conservation error reached 1le-4. At each time step, the multi-
level preconditioned gradient method took five iterations to re-
ducetherelativeresidual to 1le-4. Sincethe meshin thisproblem
isuniform, an explicit scheme such asthe FDTD method would
have performed more rapidly in this case. However, as the fol-
lowing example shows, a much smaller mesh can be used with
high-order bases, making the proposed method a competitive
dternative. Fig. 2(a) shows the computed transmitted scattering
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Fig. 4. Comparison of rates of convergence for the rectangular waveguide.

amplitudesfor three types of theinput signals. The spectral con-
tent of these three signals are plotted in Fig. 2(b). The scattering
amplitudes exhibit relatively larger errors at frequencies with
lower input amplitudes.

B. Empty Rectangular Waveguide

Since the port impedances are not matched in the proposed
method, here we examine the effect of this approach. We study
a rectangular waveguide of dimensions of 8 x 16 mm? and
10-mm long. Fig. 3(a) and (b) compares the scattering ampli-
tudes before and after renormalization with the exact solution.
Above cutoff, the unmatched scattering amplitudes show signs
of dispersion; below cutoff, the waveguide is completely mis-
matched to the assumed impedance at the ports and the wave
is totally reflected. Indeed, the port impedance below cutoff is
pure imaginary, indicating a lossy port. If the port impedance
were matched, the wave would travel through the ports and this
would take only 0.35 ns, equal to the pulsewidth plus the time
needed to travel from the input to output port. Since evanescent
modes are bounced between the ports, it takes 0.8 ns for the
wave to die out inside the structures. Fig. 3(c) shows that the
matched reflected wave has a smaller amplitude than the un-
matched one, revealing the consequence of the unmatched port
impedance.

To demonstrate the benefit of using high-order basesin space,
we solve a series of uniformly refined meshes with the order
of the range space of the bases rising from zero to three. The
average error versus CPU time is plotted in Fig. 4 where the
error is computed as

P (|1sal = 155117 ar
i e VI

Error in the time-domain simulation has two parts: discretiza-
tion error in space and truncation error intime. InFig. 4, we see
that the higher order bases are more accurate with small meshes,
but reach a plateau of 2.2e-4 when time truncation error dom-
inates. To further lessen total error, one must reduce the time
step, which is confirmed by numerical experiment. We observe
in Fig. 5(a) and (b) that the errors at the cutoff frequency are
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Fig.5. Distribution of error for the rectangular waveguide. (a) Element size=
h. (b) Element size= h/2.

often larger and converge slower than those at the other fre-
guency points. The cutoff frequency point behaves like a sin-
gular point in the time coordinate, analogousto cornersin space
coordinates.

C. Microstrip Low-Pass Filter

To show that the proposed method can be applied to mi-
crostrip structures, we consider amicrostrip low-passfilter. The
top view of thefilter isdepictedin Fig. 6. The substrate is 25-mil
thick, and has a relative dielectric constant of 9.6. Due to the
presence of three stubs, the spectral response of thisfilter from
2 to 20 GHz contains three poles. The time-domain solution is
compared to a discrete sampling of the frequency-domain solu-
tion in Fig. 7. Due to singularities around the edges of the con-
ducting strip, the mesh is extremely fine in these regions. If an
explicit scheme has been used, the time step would need to be
orders of magnitude smaller than is required here.

D. Asymmetrical Waveguide Sep

To demonstrate the multimode capability of the transfinite-
element method, we solve an asymmetrical rectangular wave-
guide step where one propagating mode from the input port is
split into two modes at the output port. The dimensions of the
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Fig. 7. Reflected scattering amplitude of the low-pass filter.

waveguideare changed from 2 x 6 mm? to 3 x 9mm?, asshown
in Fig. 8(a). The cutoff frequency of the TE01 mode of the nar-
rower guide is 25 GHz and the cutoff frequencies of the TE01
and TE02 modes of the wider guide are 17 and 33 GHz, re-
spectively. To obtain the scattering matrix up to 35 GHz, we
need to allow two modes for the wider guide and one mode
for the narrower guide. The results are in excellent agreement
with thefrequency-domain solution, asshown in Fig. 8(b) where
S(i-j, k1) istheentry of the generalized scattering matrix from
port 4, mode j to port k&, mode . Fig. 9 illustrates how the input
signal from the narrower guideissplit into two modes at the port
of the wider guide.

E. Shielded Rectangular Dielectric Waveguide

To extend the applicability of the proposed method to the
structures with port extensions other than homogeneous waveg-
uides or microstrip lines, we consider the shielded rectangular
dielectric waveguide shown in the insert of the Fig. 10. In this
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waveguide, the modes are hybrid, neither TE, nor TM. We com-
pare the transmitted scattering amplitudes from the proposed
method with those of the frequency-domain method. As shown
inFig. 11, largeerrorsappear for the second mode at thelow-fre-
quency end. To inspect the cause, we plot the similarity index
of the mode pattern versus frequency in Fig. 12. The similarity
index of the mode pattern is defined as

(& — &)
=
o

SMP(f) = 100 x <1 -
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where ¢ is the port solution at the frequency f. We discover
the mode pattern of the second mode below 3 GHz does not
resemble the mode pattern at 7 GHz. Therefore, in this case, the
proposed method cannot be applied to the second mode. This
example demonstrates our earlier contention that for structures
with other than homogeneous waveguide or microstrip ports,
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one needs to compute the similarity index up front to determine
the applicability of the proposed method.

V. CONCLUSIONS

A highly efficient procedure has been presented for the time
solution of 3-D microwave structures. The proposed method has
three mgjor advantages over the FDTD method. First, the proce-
durerequiresamuch smaller meshthan FDTD. Thisisachieved
by employing unstructured meshes, high-order bases, and the
transfinite-element method. Second, the procedure employs an
unconditionally stable time-marching processthat allowslarger
time steps. Third, the procedure uses only one conforming mesh
and, hence, permits exact modeling of interfaces between mate-
rialswith both permittivity and permeability variations. Numer-
ical examples demonstrate the efficacy and applicability of the
proposed method.
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